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A new method to predict vessel/platform
critical dynamics in a realistic seaway

By S. Vishnubhotla1, J. Falzarano1 a nd A. Vakakis2

1School of Naval Architecture and Marine Engineering,
University of New Orleans, 911 Engineering Building,
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2Department of Mechanical and Industrial Engineering,
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In this paper, a recently developed approach is used that makes use of a closed form
analytic solution, which is exact up to the  rst order of randomness, and takes into
account exactly the unperturbed (no forcing or damping) global dynamics. The result
of this is that very-large-amplitude nonlinear vessel motion in a random seaway can
be analysed with techniques similar to those used to analyse nonlinear vessel motions
in a regular (periodic) seaway; the practical result being that dynamic capsizing stud-
ies can be undertaken considering the true randomness of the design seaway. The
capsize risk associated with operation in a given sea spectrum can be evaluated dur-
ing the design stage or when an operating area change is being considered. Moreover,
this technique can also be used to guide physical model tests or computer simulation
studies to focus on critical vessel and environmental conditions which may result in
dangerously large motion amplitudes. In order to demonstrate the practical useful-
ness of this approach, extensive comparative results are included. The results are
in the form of solutions which lie in the stable or unstable manifolds and are then
projected onto the phase plane.

Keywords: nonlinear ship/platform motions; stochastic vessel dynamics;
critical ship/platform roll dynamics; nonlinear dynamical systems; phase plane

1. Introduction and background

Research studies of nonlinear ship and ®oating o¬shore platform rolling motion using
dynamical systems’ approaches have become quite common (Thompson 1997). How-
ever, practical ship design stability criteria still focus on the static restoring moment
curve as the sole or dominant indicator of the vessel’s resistance to capsizing and
only consider the motion in an implicit or very approximate manner. Most nonlinear
motions studies are limited to single-degree-of-freedom and regular-wave (periodic)
excitation, with few exceptions (see, for example, Hsieh et al . 1993; Simiu & Frey
1996; Soliman & Thompson 1990; Lin & Yim 1995). It is well known that roll can-
not always be decoupled from the other degrees of freedom, but more importantly
it is well known that sea waves are not regular but are in fact random. It is com-
mon in the design of ships and ®oating o¬shore platforms to make narrow banded
assumptions and predict short-term extremes using the Rayleigh probability density
function (PDF) (see, for example, Ochi 1998). In this study, the highly nonlinear
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near-capsizing behaviour of a small  shing vessel and a very large semi-submersible
platform in a random seaway is analysed by using an analytical solution to the dif-
ferential equation. The availability of such a closed form solution allows safe basin
boundary curves for this pseudo-randomly forced system to be generated.

The Patti-B was a small  shing vessel which has the dubious distinction of having
capsized twice. This vessel operated o¬ the east coast of the United States and was
involved in two capsizings. Initially, she capsized in shallow water and her owners
salvaged her (NTSB 1979). The second time, the vessel capsized in deeper waters
and all hands were lost.

The `mobile o¬shore base’ (MOB) is a structure, approximately one mile long,
made up of three to  ve individual, large, semi-submersible single base units (SBUs).
Transit draft has been identi ed as a particular area of concern from a dynamics and
stability standpoint. Although while at operating draft, semi-submersibles are rela-
tively transparent to wave excitation due to the majority of the hull volume being
submerged far below the water surface, while at transit draft, an individual uncon-
nected SBU operates essentially as a catamaran with a relatively high metacentric
height. With the lower hulls penetrating the water surface, wave excitation can be
important. Moreover, due to the reduced freeboard of the lower hulls, wetting of the
their tops may also occur. This will result in a parametric excitation not explicitly
considered herein.

2. Physical system modeling

The focus of this study is the highly nonlinear rolling motion of ships and ®oating
o¬shore platforms, possibly leading to capsizing. For the small  shing vessel, the
roll axis is the critical motion axis. Even though semi-submersibles generally have
critical dynamics about a diagonal axis (Kota et al . 1997, 1998), due to the relatively
large length-to-beam ratio of the MOB SBUs, roll is assumed to be critical for this
analysis. Roll is, in general, coupled to the other degrees of freedom; however, under
certain circumstances, it is possible to approximately decouple roll from the other
degrees of freedom and to consider it in isolation. This allows focus on the critical roll
dynamics. The decoupling is most valid for vessels which are approximately fore{aft
symmetric; this eliminates the yaw coupling. The USNA generic MOB is exactly
fore and aft symmetric. Moreover, by choosing an appropriate roll-centre coordinate
system, the sway is approximately decoupled from the roll (Webster 1989). For ships,
it has been shown in previous studies that even if the yaw and sway coupling are
included, the results di¬er only in a quantitative sense. The yaw and sway act as
passive coordinates and do not qualitatively a¬ect the roll (Zhang & Falzarano 1994).

The other issue is the modelling of the ®uid forces acting on the hull. Generally
speaking, the ®uid forces are subdivided into excitations and reactions (Newman
1982). The wave-exciting force is composed of one part due to incident waves and
another due to the di¬racted waves. These forces are strongly a function of the
wavelength/frequency. The reactive forces are composed of hydrostatic (restoring)
and hydrodynamic reactions. The hydrostatics are most strongly nonlinear and are
calculated using a ship hydrostatics computer program. In order that the zeroth-
order solutions are expressed in terms of known analytic functions, the restoring
moment curve needs to be  tted by a cubic polynomial. Although this  t may be
somewhat approximate for the MOB SBU case, it is assumed that it will yield at
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Figure 1. (a) Patti-B roll-moment excitation transfer function (RAO). (b) Patti-B roll-moment
excitation spectrum (Uw = 2:75 m s ¡ 1 ). (c) Patti-B corresponding roll-moment excitation time
history.

least the correct qualitative behaviour. It should be noted here that it is not much
more di¯ cult to use a numerically generated zeroth-order solution which is based
upon an accurate higher-order righting-arm curve (Zhang & Falzarano 1994). The
hydrodynamic part of the reactive force is that due to the so-called radiated wave
force. The radiated wave force is subdivided into added mass (inertia) and radiated
wave damping. These two forces are also strongly a function of frequency. However,
since the damping is light, and for simplicity, constant values at a  xed frequency
are assumed. Generally, an empirically determined nonlinear viscous damping term
is included. However, such empirical viscous damping results are only available for
ship hulls. The resulting equation of motion is

(I44 + A44(!n)) �¿ + B44(!n) _¿ + B44q
_¿ j _¿ j + ¢GZ( ¿ ) = F (t): (2.1)

The focus of this study is nonlinear ship and ®oating o¬shore platform rolling
motion in a realistic seaway due to a pseudo-random wave excitation. The e¬ect
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of seaway intensity is accurately considered. In order to obtain the roll-moment
excitation spectrum, the sea spectrum is multiplied by the roll-moment excitation
response amplitude operator (RAO) squared (see equation (2.2 a)). The RAO for the
small  shing vessel in given in  gure 1a.

The sea spectral model used for the small  shing vessel is the Pierson{Moskowitz
(PM). The PM sea-state equation (Ochi 1998) is as follows:

S + (!) =
8:1 £ 10¡3g2

!5
e¡0:74(g=Uw!)4

;

where Uw is the wind speed. The PM model is used for this case because it corre-
sponds to a fully developed seaway, which is in some sense the most severe. Moreover,
the spectrum is a one-parameter spectrum so that solely the e¬ect of seaway intensity
can be considered.

The sea spectral model used for the SBU of the MOB is the NATO sea-state
descriptions, which use the Bretschneider sea-state formula. The Bretschneider sea-
state formula (Ochi 1998) is expressed as

S + (!) = 0:1687H2
s

!4
s

!5
e¡0:675!4

s =!4

;

where H s is the signi cant wave height (i.e. the average of the one-third highest
waves) and ! s is the signi cant wave frequency. The NATO model is used because it
corresponds to a typical random seaway encountered in the North Atlantic operating
areas of the NATO navies. In general, the Bretschneider sea spectrum is a two-
parameter seaway with signi cant wave height and signi cant period as the two
parameters. However, using the NATO wave data, the seaway intensity or sea-state
number becomes the single parameter.

These two sea spectral formulae are based upon limited theoretical analysis and
extensive wave data analysis. Various additional relationships can be derived by
manipulating these formulae and applying the Rayleigh PDF (Ochi 1998).

Figure 1b; c shows the excitation spectra for the Patti-B and the corresponding
time history of the forcing (in non-dimensional form) for a wind speed of Uw =
2:75 m s¡1. Figure 2 is for larger Uw. The signi cant wave heights for the sea spectra
used for the Patti-B range from less than 0.6 m to almost 2.3 m. Although a di¬erent
sea-state formula is used for the MOB, in order to relate the two vessels, the sea-state
intensity ranges from about sea state 1 to 4 (Bhattachrayya 1978) for the Patti-B
and sea states 5 to 9 for the MOB. Alternatively, the seaways considered for the
MOB have signi cant wave heights, which range from ca. 3.2 m to 13.8 m.

It should also be noted herein that the complicated MOB roll-response RAO cal-
culated was approximated by the smooth curve depicted in  gure 3a. However, the
true RAO calculated exhibited numerous humps and hollows at higher frequencies
beyond the peak. Due to the small amount of wave energy at these frequencies, these
oscillations were ignored. The resulting excitation spectrum is decomposed into peri-
odic components with random phase angles. The time-dependent forcing function
would then assume the form shown in  gure 3c:

S +
R (!) = jRAOj2S + (!); (2.2 a)

F (t) =
N

i= 1

F M (!i) cos(!it + ® i); (2.2 b)
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Figure 2. (a) Patti-B moderate-amplitude roll-moment excitation spectrum (Uw = 5:15 m s ¡ 1 ).
(b) Patti-B large-amplitude roll-moment excitation spectrum (Uw = 10:0 m s ¡ 1 ).

where

F M (!i) = 2S +
R (!i)¢!: (2.2 c)

Figure 3b; c shows the MOB SBU excitation spectra and the corresponding time-
dependent force (in non-dimensional form) for a NATO sea state 5. Figure 4 is the
MOB excitation spectrum for sea state 9.

3. The dynamical perturbation method

The focus of this investigation is the extension of an approach previously used
to study the nonlinear dynamics of a small  shing vessel and a very large semi-
submersible platform due to pseudo-random wave excitation (Vishnubhotla et al .
1998, 1999). The approach was originally developed by Vakakis (1993, 1994) to
calculate in closed form the homoclinic manifolds due to rapidly varying periodic
excitation. That approach was generalized to calculate heteroclinic manifolds due
to pseudo-random wave excitation. Considering that random excitation is a realis-
tic model for ship and ®oating o¬shore platform motions at sea, this method was
extended and then applied to consider the case of perturbed heteroclinic manifolds
due to an external excitation as approximated by a  nite summation of regular
(periodic) wave components.

The solution to equations such as (2.1) with softening spring characteristics ex-
hibits two greatly di¬erent types of motions depending upon the amplitude of the
forcing. For small forcing amplitude, the  rst type of motion is an oscillatory motion
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Figure 3. (a) MOB roll-moment excitation transfer function (RAO) (smoothed). (b) MOB
roll-moment excitation spectra (NATO sea state 5) for [Hs ; T0 ] = [10:7; 9:7]. (c) MOB corre-
sponding roll-moment excitation time history. Roll-moment excitation force (non-dimensional-
ized) for [Hs ; T0 ] = [10:7; 9:7].

which is bounded and well behaved. For large amplitudes of forcing, the motion can
be such that a unidirectional rotation occurs. The boundary between these two types
of motions is called, in the terminology of nonlinear vibrations, the separatrix. This
curve literally separates the two qualitatively di¬erent motions. In the language of
nonlinear dynamical systems, these curves are called the (upper and lower) saddle
connections. The saddles are connected as long as no damping and forcing are con-
sidered in the system. Once damping is added to the system, the saddle connection
breaks into stable and unstable manifolds. The stable manifolds are most impor-
tant because they form the basin boundary between initial conditions which remain
bounded and those that become unbounded. When periodic forcing is added to the
system, these manifolds oscillate periodically with time but return to their initial

Phil. Trans. R. Soc. Lond. A (2000)

 rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/


A new method to predict vessel/platform dynamics 1973

1.5 ́  1020

1 ´  1020

5 ´  1019

0
10 0.2 0.4 0.6 0.8

S
R
( 

  )
 (

lb
 f

t2 s)
w

(rad s - 1)w
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Roll-moment excitation spectra for [Hs ; T0 ] = [45:9; 20:0].

con guration after one period of the forcing. This forcing period is chosen for the
Poincaŕe sampling time of such a periodic system. However, no such obvious Poincaŕe
time sampling exists for the pseudo-randomly forced system studied herein.

In this investigation, the random wave forcing is approximated by a summation of
periodic components with random relative phase angles. Although this representation
approximates the true random excitation as N ! 1 and ¢! ! 0, for  nite N
this does not occur. Actually, the `random’ signal repeats itself after TR = 2º =¢!.
Another relevant time period is the average or zero crossing period T0. Assuming the
spectra is narrow banded, this might also be a good reference period for a Poincaŕe
map. In lieu of Poincaŕe maps, we choose to trace out single solution paths which
are contained in the stable manifolds (see  gure 5). These are then projected onto
the phase plane.

The solutions lying in the stable manifolds are calculated using the new approach.
This method is a perturbation method which begins with the undamped and unforced
separatrix (see  gure 5) which, for a simple softening spring (equation (3.1)), is known
in closed form, i.e.

�x + x ¡ kx3 = 0; (3.1)

x( ½ ) =
1p
k

tanh
½ ¡ ½ 0p

2
+ 1

2
; (3.2 a)

_x( ½ ) =
1p
2k

sech2 ½ ¡ ½ 0p
2

+ 1
2

; (3.2 b)

where ½ is the scaled time and ½ 0 is the scaled initial time. The  rst-order solution is
determined by using the method of variation of parameters. Equation (2.1) can now
be scaled into the following form:

�x + x ¡ kx3 = ° ( ¡ ® _x ¡ ® q _xj _xj + F ( ² )); (3.3)

where ² = ( ½ ¡ ½ 0)=
p

2 + 1
2
. The solution method involves expanding the solution in

a perturbation series as

x( ² ) = x0( ² ) + ° x1( ² ) + : (3.4)
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The  rst-order equation to be solved is actually a linear equation with time vary-
ing coe¯ cients. The coe¯ cients are obtained from the zeroth-order solution known
from (3.1) and (3.2), i.e.

�x1 + x1 ¡ 3kx1x2
0 = Ĝ(x0; ² ; ½ 0): (3.5)

Once the homogeneous solution is determined, the particular solution is then
obtained by again using the technique of variation of parameters. The above  rst-
order di¬erential equation (3.5) is linear with non-constant coe¯ cients and an inho-
mogeneous right-hand side Ĝ. The non-constant coe¯ cients and the right-hand side
are composed of functions involving the now known zeroth-order solution and other
known functions of time. The method is then used to determine the critical solutions
which separate the bounded steady-state oscillatory motions from the unbounded
motions. These solutions are determined by placing conditions on the varied param-
eters which multiply the homogeneous solutions.

The details of the solution procedure can be summarized as follows. To start, note
that one of the  rst-order homogeneous solutions, x(1)

h 1 , is just the time derivative
of the zeroth-order solution. The other  rst-order homogeneous solution, x

(2)
h 1 , can

then be obtained by applying the method of variation of parameters and using the
Wronskian determinant. Once both homogeneous solutions are known, the particular
solutions can be obtained by again applying the method of variation of parameters.
The total solution given in (3.6) is then attainable from the summation of the homo-
geneous and particular parts. The only aspect that remains is to determine the values
of the variation constants, ¬ and  . These values are determined such that the stable
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solution remains bounded for all positive time to in nity while the unstable solution
remains bounded for all negative time to in nity.

Vakakis originally developed this technique to study the Holmes{Du¯ ng (buckled
beam) oscillator with a rapidly varying external excitation and the details of that
analysis are described in Vakakis (1993). The approach taken in this paper, although
di¬erent from the original analysis, is similar enough that all the details need not be
completely repeated herein. The  rst-order solution for the perturbed manifolds is
as follows:

x1( ² ) = x(1)
h 1 ( ² ) ¬ ¡

²

0

x(2)
h 1 ( ½ )Ĝ( ½ ) d ½ + x(2)

h 1 ( ² )  ¡
²

0

x(1)
h 1 ( ½ )Ĝ( ½ ) d ½ :

(3.6)

The associated constants (the varied parameters) are determined such that the criti-
cal basin boundary solutions remain bounded for in nite time (Vakakis 1993). These
conditions provide the stable and unstable manifolds associated with the positive
and negative angles of vanishing stability and correspond to the upper and lower
separatrices, respectively. The stable manifolds form the basin boundary between
bounded (safe non-capsizing) and unbounded (capsizing) solutions (see, for exam-
ple,  gure 5). It is also possible to determine the unstable manifolds by choosing the
variation constants such that the manifolds remain bounded for minus in nite time.
The unstable manifolds are important because they interact with the stable mani-
folds and erode the safe basin. The integrals in (3.6) can be determined analytically
in series form for simple springs and numerically for more complicated springs. This
is the key aspect of the method in that it is capable of yielding exact series solutions
for simple springs which later can be used to verify approximate numerical results.

Although this method was originally developed by Vakakis (1993) to study intersec-
tions of stable and unstable manifolds for equations for which the Melnikov method
could not be used, this method is applied herein because it is general enough to yield
exact solutions to general equations such as the multiple frequency forcing case being
studied. This multiple frequency forcing case is an engineering approximation used
in time domain simulations and physical scale model testing in wave tanks to model
a truly random seaway which occurs in nature. However, each time history repre-
sents a single realization of the random seaway. In order for the results of such an
investigation to be useful, multiple realizations must be considered. One must then
obtain average and standard deviation values of the manifold locations. Whether or
not the pseudo-random representation of the spectra is a valid random representa-
tion is an extensively debated subject in naval architecture and o¬shore engineering
(Chakrabarti 1989). Although, for  nite N , this representation does not satisfy the
condition of a Gaussian seaway or response, it does so in the limit as N ! 1.
Alternative representations of the random seaway do exist and include  ltered white
noise. However, this may not be easily applicable to the present problem.

4. Results

The results are for two vessels, which essentially span the entire size range of ships
and ®oating o¬shore platforms, either existing or planned. The  rst set of results
is for a small  shing vessel which is probably one of the smallest vessels to venture
away from safety of shore. The second set of results is for an SBU of the US Navy’s
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planned MOB. Alternatively, the MOB SBU, if built, will be the largest ®oating
vessel ever built. The two sets of results are shown for comparison since they exhibit
such qualitatively di¬erent types of behaviour. Even though the seaway intensities
are di¬erent, with the Patti-B exposed to mild seaways and the MOB exposed to
more severe seaways, the vessels’ relative sizes are so vastly di¬erent that the results
are still qualitatively di¬erent.

An indication of if the basin boundaries will be simple and smooth or fractal
and complicated is determined by whether the manifolds intersect or not. As a  rst
step in determining whether or not this will occur for the pseudo-randomly forced
system, we determine solutions which lie in both the stable and unstable manifolds.
After this is done, the distance between the two solutions can then be determined
and this will indicate whether or not a manifold intersection has occurred. When
the distance between the two manifolds goes to zero, the manifolds become tangent
and this is a critical value of the forcing. Beyond the value of forcing where the
manifolds become tangent, the manifolds intersect and the safe basin begins to erode.
This is exactly what the Melnikov function (Falzarano et al . 1992) is used for and
what is being developed herein is simply a more general alternative to the Melnikov
approach. The method described has several potential bene ts over the classical
Melnikov approach. These bene ts enable us to (a) analyse very general systems
for which the Melnikov method is not valid, (b) obtain higher-order results, and
(c) develop a visual projection of the manifolds for single-degree-of-freedom systems.

(a) Patti-B safe basin boundary projected phase plane

The  rst set of results is for physical parameters representing the clam dredge
Patti-B (Falzarano et al . 1992) in beam seas and rolling in various intensity PM sea
spectra. As stated previously, the sea spectra are approximated by a  nite but large
number of periodic components. As can be seen, when the wind speed is increased and
the seaway intensity increases, the vessel’s dynamics change qualitatively. The upper
and lower stable manifolds change from smooth curves similar to the unforced system
to rather complicated curves indicating the possibility of manifold intersections. The
size of the safe operating region of the vessel is somewhat related to when these
manifolds intersect and become fractal or complicated. Figure 2 shows moderate- and
large-amplitude sea spectra plotted against frequency for a range of wind speeds. The
wind speed is the single parameter describing the seaway intensity. Results for time-
varying roll-motion solutions contained within the upper and lower stable manifolds
projected phase planes for these sea spectra are given in  gure 6. When looking
at these projected phase-plane results, it should be recognized that the solutions
depicted represent a time evolution of a single trajectory and are not Poincaŕe time
samplings of the manifold. This explains the wrapping around the  xed point. The
random oscillation occurs on the average at the zero crossing period while the solution
is slowly evolving towards the  xed point.

(b) MOB safe basin boundary projected phase plane

The second set of results is for parameters representing the USNA generic MOB
hull-form at transit draft in beam seas rolling in various intensity NATO sea spec-
tra. As stated previously, the sea spectra are approximated by a  nite number of
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Figure 6. (a) Patti-B projected phase plane for PM spectra (Uw = 2:75 m s ¡ 1 ). (b) Patti-B
projected phase plane for PM spectra (Uw = 5:15 m s ¡ 1 ). (c) Patti-B projected phase plane for
PM spectra (Uw = 10:0 m s ¡ 1 ).

periodic components. As can be seen, when the seaway intensity increases, the ves-
sel’s dynamics change qualitatively. The distance between the upper and lower stable
manifolds and the roll axis in the neighbourhood of the angle of vanishing stability
changes as the intensity of the seaway increases. As the wave amplitude increases,
the magnitude of the unstable periodic orbit in the neighbourhood of the angle of
vanishing stability increases. In our previous analysis of a small  shing vessel above,
the manifolds changed from smooth curves similar to the unforced system to rather
complicated curves, indicating the possible presence of manifold intersections. Since
the MOB is so large, these rather severe seaways do not dramatically a¬ect the
manifolds.

Figure 3b; c shows moderate- and large-amplitude Bretschneider sea spectra plot-
ted versus frequency for sea-state intensities 5 and 9, with the sea-state intensity
being the variable parameter. The projected phase planes results for time-varying
roll-motion solutions contained within the upper and lower stable manifolds are given
in  gure 7. It should be noted that the results given are non-dimensionalized, using
the non-dimensionalization implied by (3.3).

(c) Patti-B extended state-space results

Once unstable manifolds are included, the two-dimensional projection of the time-
varying solutions which lie in the stable or unstable manifolds may be deceptive. This
is so because true intersections only occur for the same time phase. Therefore, a three-
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Figure 7. MOB projected phase plane for NATO sea spectra: (a) sea state 5
(for [Hs ; T0 ] = [10:7; 9:7]); (b) sea state 9 (for [Hs ; T0 ] = [45:9; 20:0]).
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Figure 8. Patti-B extended phase space showing solutions contained in stable and unstable
manifold (Uw = 2:75 m s ¡ 1 , V = 2:75 m s ¡ 1 ).
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Figure 8. (Cont.)

dimensional extended state-space representation is the only unique representation. In
order to illustrate this, and in order to determine whether or not intersections have
occurred, some typical results for the Patti-B are provided. These one-dimensional
solution curves are displayed in the full three-dimensional extended state space ( g-
ure 8). These results clearly indicate that the two curves do not intersect for the
two given seaway intensities. A more extensive and systematic investigation is cur-
rently underway. In order to determine more clearly if the manifolds’ intersections
have occurred, the entire manifold must be generated. Generating the entire mani-
fold would involve varying the initial time t0 and then generating an entire manifold
mesh. After this had been done, the distance between the two manifolds, i.e. stable
and unstable, can then be calculated. This distance going to zero would indicate
that manifold intersections were imminent. This would be a critical value of external
wave forcing since, at a greater value of wave forcing, the safe basin would begin to
erode.
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5. Conclusions

The described method is quite powerful and capable of handling very general systems.
The application herein used the knowledge of the zeroth-order solution, which was
known in closed form for this simple system. However, this is not a requirement and
actually for more general systems it could be known numerically. Clearly, the safe
operating region of the vessel is directly related to when the calculated stable and
unstable manifolds intersect and erode the safe basin. It should be re-emphasized here
that the results given correspond to single realizations of the given sea spectra. In
order to gain a more complete probabilistic understanding of the system’s random
behaviour, multiple realizations must be considered and analysed. This ensemble
of results should then be analysed in terms of averages and standard deviations.
However, this has not yet been done in a systematic manner.

The results clearly demonstrate the e¬ect of random excitation on the global non-
linear dynamics of both vessels about their roll axes. However, it should be noted
again that, in general, for typical semi-submersibles, the roll axis is not the critical
rotation axis. The critical axis is often an approximately diagonal axis (Kota et al .
1998). It is believed that due to the large length-to-beam ratio of the MOB SBUs,
the roll axis is most probably the critical axis or quite close to the critical axis.
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manager Gene Remmers and the NFESC MOB Project Team. J.F. and A.V. also acknowledge
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